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IDENTIFYING APPLE SURFACE DEFECTS USING PRINCIPAL

COMPONENTS ANALYSIS AND ARTIFICIAL NEURAL NETWORKS

B. S. Bennedsen,  D. L. Peterson,  A. Tabb

ABSTRACT. Artificial neural networks and principal components were used to detect surface defects on apples in near‐infrared
images. Neural networks were trained and tested on sets of principal components, derived from columns of pixels from images
of apples acquired at two wavelengths (740 nm and 950 nm). In an iterative process, different ways of preprocessing images
prior to training the networks were attempted. Best results were obtained by removing the background and applying a Wiener
filter to the images. Overall, the best performance obtained was 79% of the defects detected in a test set consisting of
185�defects.
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 significant amount of effort has been directed to‐
wards the creation of technologies that will sort
apples according to external defects. Throop and
Aneshansley (1997) found that certain wave‐

bands are particularly suited for detection of surface defects
on apples. They found that 540 nm produced the best seg‐
mentation of defects caused by blister spot, early frost dam‐
age, powdery mildew, russet, sting, and sunburn; 750 nm
performed best for bitter pit, Botryosphaeria rot, chemical
damage, codling moth, corking, cracking, fly speck, hail
damage, leaf roller, rot, scab, and sooty blotch; and 950 nm
proved to be the optimal wavelength for detecting bruises,
punctures, and scald.

Aneshansley et al. (2003) developed an optical filter sys‐
tem with a splitter and two band‐pass filters. The optics in the
splitter divided the incoming radiation into three identical
parts, each directed to a subarea on the image sensor, thus en‐
abling the camera to capture three images simultaneously.
The band‐pass filters were positioned in front of the splitter
to limit the images to consist of selected wavelengths. Based
on previous research (Throop et al., 1999), two of the three
images were used: one at 740 nm, and the other at 950 nm.
Throop et al. (1999, 2003a, 2003b) developed a sorting sys‐
tem for apples. The design included a conveying and orient‐
ing system, an image capture system, and image processing
software for apple defect identification. The orienting system
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aimed to orient the apples with the stem/calyx axis in the ver‐
tical position, perpendicular to the image‐capturing camera.
This excluded the stem and calyx region from the images and
hence eliminated the need to distinguish between these and
defects.

The image processing method used in this research was
based on data reduction by principal component analysis
(PCA) and classification using artificial neural networks. A
neural network represents an attempt to mimic the way in
which humans evaluate and classify objects. Classification is
based on an overall impression of the image or parts of the
image. In the current work, defects appear as darker areas on
the surface of the apples. However, shadows, surface irregu‐
larities, and the rim of the apples also show up in a darker
shade, making it difficult to use simple segmentation based
on gray values to identify defects. Hence, a neural network,
based on examples of defects and non‐defective apple sur‐
faces, seemed a reasonable way to separate defective from
non‐defective areas. The steps in creating a neural network
are as follows: the images are perceived as a matrix in which
the columns (vertical lines in the image) represent samples
and the individual pixel values are variables. Columns can be
sorted into two classes based on whether or not they include
a defect. The entire data matrix can then be subjected to data
reduction by PCA (Esbensen et al., 1994), and the most sig‐
nificant principal components can be used to train a neural
network to perform the classification.

OBJECTIVES

The objective of this research was to ascertain whether
surface defects on apples could be detected in near‐infrared
(740 and 950 nm) images from a given sorting system, using
a combination of principal component analysis and artificial
neural networks.

MATERIALS AND METHODS
APPLES

The apples used in this project were of the variety Golden
Delicious. They were picked at the USDA‐ARS Appalachian
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Fruit Research Station, West Virginia, in the autumn of 2003.
Specimens with different surface defects were preferred. Be‐
tween picking and testing, apples were stored at 0°C. The day
before running the apples through the sorting system, bruises
were inflicted on some of the apples. This was done by drop‐
ping apples 150 to 200 mm onto the convex surface of a semi‐
sphere of wood, thus creating a bruise of about 12 to 15 mm
diameter.

IMAGE ACQUISITION AND DATA SETS
The imaging system on the prototype apple sorter (Throop

et al., 1999, 2003a, 2003b) consisted of a camera (Dalsa
1M60, Waterloo, Ontario) with high spatial resolution
(1024�× 1024 pixels, 256 gray levels) and high sensitivity in
the near‐infrared (NIR) area at high data transfer speeds
(40�MHz). Mounted in front of the camera was an optical
splitter that enabled the camera to capture up to three images
simultaneously. Band‐pass filters in front of the splitter limit‐
ed the images to consist of selected wavelengths. Based on
previous research (Throop et al., 1999), two of the three im‐
ages were used, acquired through filters at 740 nm and
950�nm, respectively. Filter bandwidth was 40 nm.

While passing the camera, apples were rotated through
360° while the camera acquired six consecutive images. A
sensor on the apple conveyor triggered the camera to start ac‐
quiring images. Depending on the system settings and the
size of the apple, the frame would show most of the apple sur‐
face facing the camera. An example of images is shown in
figure 1. The upper six images in figure 1 were captured
through the 740 nm filter, and the lower six images were cap‐
tured through the 950 nm filter. For practical implementa‐
tion, only 60° of each apple frame were needed. Specially
designed software extracted 60° from the center of each
frame and combined the resulting six frames into an image
representing 360°, or the entire surface of the apple.

The two parts of figure 1 show how the dark spots from
various diseases are more evident in the 740 nm range, while
the bruises appear darker at 950 nm.

Identification  of defects was based on PCA and neural net‐
works. All image processing, PCA, and neural network
construction, training, and testing were done in Matlab (re‐
lease 13, The MathWorks, Inc., Natick, Mass.) using the
image processing and neural network toolboxes. The images

were perceived as data sets in which each individual column
was considered a sample and the pixel values were consid‐
ered variables. These data sets were then subjected to PCA
in order to reduce the dimensionality of the data to be used
in classification of the samples. Principal component analy‐
sis transformed the original data into a new data space, de‐
fined by a new set of axes, generally known as eigenvectors.
In this space, the first axis represents the maximum variation
in the original data set, the second axis represents the next
highest amount of variation, and so on. When the original
data are transformed to this data space, the data obtain new
sets of coordinates, known as eigenvalues or principal com‐
ponents (PC). The PCs are ranked by their variation and
hence by their ability to classify the original data. The first
PC will provide the highest contribution, the next somewhat
less, and so on. Hence, it is possible to reduce the number of
PCs by setting a minimum, below which the contribution to
classification is considered insignificant. In the Matlab PCA
routine, it is possible to select this minimum (referred to as
“accuracy” in this article), and the routine will provide only
the first PCs that each contribute more than this value to the
classification.

By using PCA, the columns of pixels were substituted by a
column of PCs. The advantage of this method is that the number
of PCs was considerably lower than the number of pixels, and
the PCs provided an optimized basis for classification. Each col‐
umn of PCs was assigned a value of “zero” if did not represent
a defect or “one” if it did represent a defect.

The new matrix, consisting of columns of PCs, and a cor‐
responding target vector of “zeros” and “ones” was used to
train the neural networks. Based on previous experiences
with this type of classification (Bennedsen, 2001), three‐
layer networks were used. The first layer, or input layer, was
designed with the number of neurons matching the number
of principal components. The second layer, or hidden layer,
had a size equal to or slightly greater than half the size of the
first layer. The output layer consisted of one neuron. Transfer
functions were sigmoid for the two first layers and linear for
the output layer. Training was done using back‐propagation
with a Fletcher‐Reeves update conjugate gradient algorithm.
In most cases, the training goal for the networks was set at
1�× 10-5 for mean square error of the output. The number of
epochs, or training iterations, was normally limited to a

Figure 1. Original images acquired with the two waveband filters; upper six images were captured through a 740 nm filter, lower six images were cap‐
tured through a 950 nm filter.
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Figure 2. Raw images organized vertically and horizontally for training and testing of neural networks.

maximum of 2400 and depended on the size of the training
set. To prevent overtraining, smaller sets (4,000 to
5,000�samples) were trained for fewer epochs, whereas as
very large sets (9,000 samples) were trained for more epochs.

The neural networks were trained by selected training
sets. Due to the difference in detection ability of the two
wavebands used, two training sets were constructed: one for
740 nm images, and one for 950 nm. Training set images were
chosen by the presence of clear and typical defects. Typical
image frame size was 143 pixels high on the stem/calyx axis
and 111 pixels wide, with six frames totaling 666 ×
143�pixels per apple image. The frame size was decided
during image acquisition and depended on the size of the
apples.

After selecting the training sets, the defects were marked.
This process was partly manual, as it involved marking the
defective areas by using the mouse cursor. Based on the
manual marking, a routine, developed in Matlab, performed
the image processing, which created a target vector of
“zeros” and “ones” based on the user's marking of the
defects. Using this routine also allowed certain areas of the
training image to be eliminated, such as artifacts and stem or
calyx, which may confuse the neural network and impede
training. The routine then created a new image without the
unwanted areas.

The neural networks based on 740 nm images were
marked and trained primarily to detect dark spots from
various diseases, while the neural networks based on 950 nm
images were constructed and trained in a similar way to
detect the bruises. Because of the lack of samples of small,
dark spots in the apples available, and the difficulty in
marking them accurately with the cursor, some of the training
set apple images were marked with simulated defects in Paint
Shop Pro (version 8, Jasc Software, Inc., Minneapolis,
Minn.). Marking was much easier to accomplish, more
accurate,  and produced marks indistinguishable from natural
defects, and it provided a training set with a better
representation of types and position of defects.

The images constituting the training set and their
corresponding target vectors were merged to form an image
containing samples from up to 18 apples and up to 17,000
columns wide. After training, the network was tested on

images new to the system. Principal components were
derived using the eigenvectors generated in connection with
the training set.

There were four network categories: two sets based on
740�nm images, and two based on 950 nm images. Each set
consisted of two categories based on the arrangement of the
images: “vertical” and “horizontal.” The “vertical” position
is how the images are seen by the camera, when the stem/
calyx axis is vertical. The “horizontal” images are
constructed by a Matlab routine by rotating the six frames and
then reconnecting them so that the stem/calyx axis is
horizontally oriented (fig. 2).

In order to quantify the results, a test set of 20 apple images
was selected from those not in the training sets. A Matlab
routine allowed the user to mark all of the defects with the
mouse cursor and record the coordinates of each defect.
Another routine then computed the performance of the
network and wrote these data to a Microsoft Excel
spreadsheet, outlining the success of the network in detecting
defects as well as the presence of false positives. The size of
the test sets and defective area are presented in table 1.

Ideally, the classification should be done using the raw
images. The term “raw” refers to images used as they were
provided by the camera. Figure 2 presents an example of raw
images. The hope was that the neural networks could
distinguish defects in these images, and hence additional
image processing could be avoided. In case this was not
feasible, some image processing would be employed to
improve the classification.

THREE STEPS TO DEFECT IDENTIFICATION
The identification system was developed in an iterative

process, starting with raw images as the simplest approach,
and thus the approach requiring the least amount of

Table 1. Size of test sets and of defective area.
Apple

Orientation
Total Number
of Columns

Defective
Columns

Vertical 7344 740 nm: 1863
950 nm: 1689

Horizontal 17,160 740 nm: 3286
950 nm: 2960



2260 TRANSACTIONS OF THE ASABE

processing time. The performance was then evaluated and
further developed by adding another iteration. In all, three
steps of increasing preprocessing of the images, and
combinations hereof, were employed.

Step 1: Removing the Background
The first part of the background removal process consisted

of converting the images into binary images (black and white
only) using Matlab's automatic thresholding function, which
determines the threshold value from the histogram of the
image. The thresholded image showed the apple's position in
the image as a white area on a black background. This black‐
and‐white image was used as a template to remove the
background in the original image. The routine evaluated one
column at a time and, starting from both the top and bottom
of the image, determined whether each pixel value was black
or white. If the pixel was black, representing the background,
the routine eliminated the corresponding pixel from the
column in the original image. Once the border of the black/
white area was found, the routine stopped removing pixels.

Next, the column was resized to a standard size
(100�pixels), thus stretching it to fill the entire frame. As the
routine progressed through all of the columns, it added the
processed columns onto a new matrix, recreating the original
apple image without the background. Meanwhile, the
coordinates of the background border with the apple were
recorded into two arrays: one for the upper boundary, and one
for the lower boundary. These coordinates were used to resize
the network results back to the original size and shape of the
apples in the frame. This part of the calculations made it
possible to compare the area identified by the network as
defective with the actual defects marked on the test set.

However, after the removal of dark areas by this method,
the stems on some apples still remained. If the stem was
leaning to one side or the other, the routine ignored the area
underneath the stem, thereby including some of the dark
background. This confused the network during training and
led to false positives during testing. To remedy this problem,
the thresholding function was altered to include a means for
removing the stem area by measuring if there was a drastic
change in the contour of the background/apple surface border
and, if so, eliminating the stem.

Step 2: Image Frames Reduced to 60° of the Apple
Surface

The system acquired six images for each apple while the
apple rotated through 360°. Depending on the system

Figure 3. Six frames of an apple image, each reduced to 60° of the apple
surface and thus combined to cover 360° of the apple.

settings, each frame included most of the apple surface facing
the camera. For practical implementation, only the center
60° of each apple frame was needed. In order to extract 60°,
the diameter of the apple was measured from the original
image and used to calculate the circumference. Based on this,
a number of pixels equivalent to 30° were extracted left and
right from the center of each frame. Combining the resulting
six frames yielded an image representing 360°, or the entire
surface of the apple (fig. 3).

Step 3: Filtering the Images
In an attempt to limit the influence of lenticel spots and

other small surface irregularities, which were responsible for
false positives, the images were filtered with Matlab's
Wiener filter using a 3 × 3 matrix. A Wiener filter is a type
of linear filter that adapts itself to an image based on the local
image variance. Where the variance is large, the filter
performs little smoothing. Where the variance is small, more
smoothing is performed. This approach ensured that dark
spots as a result of blemishes and bruises were left unchanged
by the filtering, although small irregularities were reduced.

COMBINING THE RESULTS FROM VERTICAL AND

HORIZONTAL NETWORKS
In order to find the total area identified as defects by the

vertical and horizontal networks, the network outputs for
each waveband (740 nm and 950 nm) were divided by two
and then added together, producing an image such as that
shown in figure�4.

Using the already marked test set, the performance of the
network was calculated in a similar way as that of the
individual network results by using a modified version of the
original program that performed these calculations. The
pixel value had to be at least 250 (which equals a
0.98�network average for both the horizontal and vertical
networks) for the program to count a network result as a

Original 740nm step

two image

Combination of 740 nm

Network Results

from this apple,

Vertical and

Horizontal

Figure 4. Original image and intersection of vertical and horizontal networks.
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Figure 5. Example of neural network detection of defects. The image, containing six subframes, is aligned with a plot of the network test output. The
network assigned a value of 0 to columns not found to include a defect and 1 to columns including a defect.

“positive,” whether for defects or for false positives. If an
intersection consisted of one pixel with a positive value, this
was counted as identifying a defect. This differs from the
results for the individual network, where 10% of the area of
the defect should have a pixel value above 250 for a defect
to be counted as detected by the network.

ANALYSIS BY DEFECT CLASS

In order to establish which types of defects were not being
detected by the network, six defect classes were defined:

� Class 1: Large dark marks (more than approx. 10 mm
diameter)

� Class 2: Small dark marks (less than approx. 10 mm
diameter)

� Class 3: Bruises
� Class 4: Bruises on the edge of the apple (near the stem

or calyx)
� Class 5: Dark marks on the edge of the apple.
The programs used to calculate the success of the

networks were altered slightly to incorporate the defect class
considerations.

RESULTS AND DISCUSSION
RAW IMAGES

In a first approach, raw apple images were used to train
and test the networks (fig. 5). However, the results of testing
the networks proved that this was not possible. Errors ranged
from 29% to 77%. Most likely, this was due to the dark
background. An example of the output of a network is shown
on figure 5, with the original image inserted above the graph.

Principal components are arranged according to the
maximum variation in the data, which may or may not be the
features by which the data should be classified. In this case,
the highest level of variation was the contrast between the
light apple surface (gray value of around 169) and the dark
background (gray value of 50 to 60), and not the interaction
of darker defects with the light, non‐defective apple surface.

REMOVING THE BACKGROUND (STEP 1) 
In order to improve the performance, the training and test

images were processed to eliminate the dark background.
This improved the performance significantly, with errors

ranging from 10% to 49% (table 2), although the vertical
networks still were not able to perform at a reasonable level.
Two types of results are presented: area and number of
defects. For a column to be identified as containing a defect,
the output value of the neural network must be above 0.98 on
a scale from 0 to 1. Regarding the number of defects, a defect
was considered identified by the network if at least 10% of
the area of the defect was correctly identified (i.e., having a
network output value above 0.98).

The area error percentage was calculated as the number of
incorrectly classified columns divided by the total number of
columns. The number of defects error was the number of
defects identified divided by the total number of defects.

IMAGE FRAMES REDUCED TO 60° OF THE APPLE SURFACE

(STEP 2)
As a result of the progress exhibited in the test results when

the dark background was removed, further preprocessing of
the images was attempted. In the previous tests, the size of the
images was determined by the image acquisition system.
Based on measurements of the circumference of the apples,
the center 60° of each apple frame were extracted and
combined to an image like the one presented in figure 3,
representing 360°, or the entire surface of the apple. The test
set was modified similarly. The results are presented in
table�3.

Since the vertical networks both yielded a higher error rate
in detecting the area and number of defects when the frames
were reduced to 60°, the training was abandoned for this
type.

Table 2. Classification errors for images after background 
was removed. (False positives are columns from non‐

defective areas, wrongly classified as defective).

Arrangement
(fig. 3)

Waveband
(nm) Defect Type

Error
(%)

False
Positives

(%)

Vertical

740 Area of defects 12 2.2
Number of defects 31

950 Area of defects 10 4
Number of defects 17

Horizontal

740 Area of defects 23 5.4
Number of defects 49

950 Area of defects 18 4.4
Number of defects 38
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Table 3. Classification errors for images after background was
removed and frames reduced to 60° of apple surface. (False positives

are columns from non‐defective areas, wrongly classified as defective).

Arrangement
(fig. 3)

Waveband
(nm) Defect Type

Overall
Error
(%)

False
Positives

(%)

Vertical

740 Area of defects 18 9.5
Number of defects 34

950 Area of defects 19 13.7
Number of defects 35

Horizontal

740 Area of defects 12 2.5
Number of defects 31

950 Area of defects 10 1
Number of defects 36

FILTERING THE IMAGES AND COMBINING IMAGE
PROCESSING METHODS (STEP 3) 

Table 3 shows that although the results for the horizontal
networks still were not very good, the number of false
positives was significantly less for this approach, and both the
740 nm and 950 nm networks had less error in detecting
defects. With this in mind, the networks trained on images
with the background removed (step 1) were tested using
images with frames reduced to 60° of the apple surface
(step�2). Further, in an attempt to limit the influence of
lenticel spots and other small surface irregularities, which
were responsible for false positives, the images were filtered
with Matlab's Wiener filter using a 3 × 3 matrix (step 3).

For the vertical networks, training sets from step 1
(i.e.,�images  with the background removed, but not reduced
to 60° of apple surface) were filtered and tested with step 3
images (i.e., images reduced to 60° of the apple surface and

filtered). The horizontal networks performed best when
trained and tested with step 3 images.

Results are presented in table 4, which also includes
information about the neural network. Errors were calculated
as described for tables 2 and 3; the overall error represents the
sum of wrongly classified columns, i.e., defects not detected
plus false positives, divided by the total number of columns.

This approach reduced the number of false positives for
the vertical network. However, it did not significantly
improve the overall performance of the vertical networks,
and it increased the error in the horizontal networks over the
best network results in step 2.

COMBINING THE RESULTS FROM VERTICAL AND

HORIZONTAL NETWORKS

The best results from previous tests were used to make the
combined network tests (fig. 6). The networks trained on
filtered step 1 images and tested on step 3 images showed the
best results for the vertical networks, while those trained and
tested in step 3 were best for the horizontal networks. Results
are shown in table 5.

ANALYSIS BY DEFECT CLASS

In order to establish which types of defects the network
was not detecting, the analysis was expanded to incorporate
the six defect classes defined earlier. Similarly to the
previous classification process, defects were considered to be
detected by the individual networks if the networks found
10% or more of the defect. In the results for intersections, if
there was an intersection of the two networks with a gray
value equal to or larger than 250 (after dividing both images
by two and adding them), the defect was considered detected.
The results are presented in table 6.

Table 4a. Training data and test results for Wiener‐filtered images (vertical 740 nm, trained on step 1 + 3, and tested on step 3).
Training Data Training

Set Size
Defective Sample

% in the Set
Training Degree

of Accuracy
Input

Neurons
Hidden
Neurons Epochs

Mean Square
Error

4771 53 0.004 15 8 1141 0.00132203

Testing Data (area) Classified as:

Total Error (%)Class Defective Non‐defective

Defective 1320 656 1976 33
Non‐defective 120 5361 5481 2.2

Overall error = 10%

Testing Data (number of defects) Classified as:

Total defects Error (%)Class Defective Non‐defective

Defective 76 34 110 31

Table 4b. Training data and test results for Wiener‐filtered images (vertical 950 nm, trained on step 1 + 3, and tested on step 3).
Training Data Training

Set Size
Defective Sample

% in the Set
Training Degree

of Accuracy
Input

Neurons
Hidden
Neurons Epochs

Mean Square
Error

8794 34 0.004 11 6 2600 0.00484353

Testing Data (area) Classified as:

Total Error (%)Class Defective Non‐defective

Defective 1345 373 1718 21.7
Non‐defective 150 5505 5655 2.7

Overall error = 7.1%

Testing Data (number of defects) Classified as:

Total defects Error (%)Class Defective Non‐defective

Defective 65 10 75 13
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Table 4c. Training data and test results for Wiener‐filtered images (horizontal 740 nm, step 1 + 3).
Training Data Training

Set Size
Defective Sample

% in the Set
Training Degree

of Accuracy
Input

Neurons
Hidden
Neurons Epochs

Mean Square
Error

4354 41 0.004 9 5 2000 0.00379609

Testing Data (area) Classified as:

Total Error (%)Class Defective Non‐defective

Defective 2190 902 3092 29
Non‐defective 8722 5152 13874 62.9

Overall error = 56.7%

Testing Data (number of defects) Classified as:

Total defects Error (%)Class Defective Non‐defective

Defective 98 12 110 10.9

Table 4d. Training data and test results for Wiener‐filtered images (horizontal 950 nm, step 1 + 3).

Training Data Training
Set Size

Defective Sample
% in the Set

Training Degree
of Accuracy

Input
Neurons

Hidden
Neurons Epochs

Mean Square
Error

7293 29 0.004 8 4 1501 0.00563264

Testing Data (area) Classified as:

Total Error (%)Class Defective Non‐defective

Defective 1000 1758 2758 63.7
Non‐defective 599 13601 14200 4.2

Overall error = 13.9%

Testing Data (number of defects) Classified as:

Total defects Error (%)Class Defective Non‐defective

Defective 41 34 75 45

Figure 6. Flowchart illustrating the steps in training neural networks and performing classification. One set of networks (vertical and horizontal) was
trained using raw images acquired through a 740 nm filter, another set was trained using images acquired through a 950 nm filter.
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Table 5a. Results of combining results of vertical and horizontal networks (740 nm).
Testing Data (area) Classified as:

Total Error (%)Class Defective Non‐defective

Defective 42629 34423 77052 44.7
Non‐defective 7695 965621 973316 0.79

Overall error = 4%

Testing Data (number of defects) Classified as:

Total defects Error (%)Class Defective Non‐defective

Defective 71 39 110 35

Table 5b. Results of combining results of vertical and horizontal networks (950 nm).

Testing Data (area) Classified as:

Total Error (%)Class Defective Non‐defective

Defective 34445 37464 72909 51.2
Non‐defective 38200 977299 939099 4.1

Overall error = 7.5%

Testing Data (number of defects) Classified as:

Total defects Error (%)Class Defective Non‐defective

Defective 57 18 75 24

Table 6. Network results analyzed by defect class.

Class
Vertical
740 nm

Horizontal
740 nm

Vertical
950 nm

Horizontal
950 nm

740 nm
Intersection

950 nm
Intersection

1: Large dark marks Number in class 7 7 4 4 7 4
Number detected 7 6 3 2 7 3
Percentage detected 100% 86% 75% 50% 100% 75%

2: Small dark marks Number in class 21 21 5 5 21 5
Number detected 13 17 4 4 10 3
Percentage detected 62% 81% 80% 80% 48% 60%

3: Faint dark marks Number in class 23 23 7 7 23 7
Number detected 9 9 4 0 5 0
Percentage detected 39% 39% 57% 0% 22% 0%

4: Bruises Number in class 50 50 50 50 50 50
Number detected 45 39 50 37 46 46
Percentage detected 90% 78% 100% 74% 92% 92%

5: Edge bruises Number in class 8 8 8 8 8 8
Number detected 2 3 2 5 3 5
Percentage detected 25% 36% 25% 63% 36% 63%

6: Edge dark marks Number in class 1 1 1 1 1 1
Number detected 0 1 1 0 0 0
Percentage detected 0% 100% 100% 0% 0% 0%

Total network performance (number of defects 
detected as % of total number of defects) 69% 84% 68% 64% 65% 76%

Table 6 outlines which types of defects were most difficult
for the neural networks to detect. The networks easily detected
large dark marks. Small dark marks were detected with a high
percentage of success; however, the success rate for the
intersection of vertical and horizontal networks suggests that the
two networks in each waveband are detecting different defects,
hence, not producing as many intersections, or positives, as
were found by the individual networks. The same trend follows
with faint dark marks (class 3). The percentage of edge bruises
caught by the horizontal networks is higher than for the vertical
ones. It was found that the networks had difficulties detecting
bruises on the top and bottom of the column, as the networks
probably assumed that these darker areas were the shadow on
the top and underside of the apple. A defect was considered an
“edge defect” if it was on the upper or lower edge of the apple
surface, when the apple image was in the vertical con-

figuration. Since the apple frames, and hence the edge defects,
were rotated to form the horizontal networks, finding edge
defects was much more successful with the horizontal network
than the vertical network.

To evaluate the overall performance of the method, the
network intersection results from each class were added, and
then an overall percentage of success was found (table 7). It
should be remembered, though, that these results represent
adding the 740 nm intersection and the 950 nm intersection.
Some of the defects are duplicated in both wavebands, such
as the large dark marks and bruises. Others, such as the small
dark marks and faint dark marks, are not. What is considered
a small dark mark in the 740 nm range usually shows as a faint
dark mark, or not at all, in the 950 nm range, while bruises are
represented by larger, dark areas in the 950 nm images, but
only faint darkenings in the 740 nm images.
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Table 7. Overall performance of the method based on number of defects in the different classes.
Class 1: Large
Dark Marks

Class 2: Small
Dark Marks

Class 3: Faint
Dark Marks

Class 4:
Bruises

Class 5:
Edge Bruises

Class 6: Edge
Dark Marks Total

Number in class 11 26 30 100 16 2 185
Number detected 10 13 5 92 8 0 128
Percentage detected 91% 50% 17% 92% 50% 0% 69%

Faint dark marks may not be important for the grading of
apples. These marks usually accompany larger defects,
which would result in the elimination of the apple from the
higher grades. Consequently, if these faint dark marks were
eliminated from the above calculation, and leaving all other
things equal, the overall performance of the method becomes
79% accuracy in detecting defects using four neural networks
and their intersections.

CONCLUSION
The experiments demonstrated that neural networks,

utilizing principal components derived from NIR images of
apples, can detect defects on apple surfaces with an overall
detection rate of up to 79%. The best results for vertical
images were obtained when the networks were trained on
images where the dark background was removed and the
images subsequently Wiener filtered. For the horizontal
images, the networks were trained on images with the
background removed, reduced to 60°, and Wiener filtered.
For actual defect detection, both vertical and horizontal
images should be subjected to all three steps of image
processing.

The Wiener filtering of the images contributed
significantly to reducing the number of false positives from
lenticel spots and similar surface irregularities. Using only
the defects found in both the vertical and horizontal images
reduced the number of detected defects but was necessary in
order to reduce false positives. Small dark marks and defects
towards the edge of the images proved difficult to detect.
Some improvements could be derived from changing the
geometry of the equipment, e.g., increasing the resolution of
the images in order to catch more of the small defects, or
allowing for rotation in two planes, which would eliminate
the problems with edge defects.

With a detection rate of 79%, the method is not suitable by
itself for practical implementation. However, no single
method has been developed so far that performs adequately.
The neural network method described here differs from other

methods because it is based on a learning process, and it is
believed that this method is capable of detecting defects that
other methods may miss. The assumption is that the final
solution to defect detection lies in combining methods, where
each method is more or less capable of identifying different
defects types and the output of the methods are then
combined in a sort of voting system that decides the quality
of the apple. Further research is obviously required in order
to develop supplementary methods and combine them in a
decision system.
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